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Abstract— Robots are networks of a variety of computing
devices, such as powerful computing platforms but also tiny
microcontrollers. The Robot Operating System (ROS) is the
dominant framework for powerful computing devices. While
ROS version 2 adds important features like quality of service
and security, it cannot be directly applied to microcontrollers
because of its large memory footprint. The micro-ROS project
has ported the ROS 2 API to microcontrollers. However, the
standard ROS 2 concepts are not enough for real-time
performance: In the ROS 2 release “Foxy”, the standard ROS 2
Executor, which is the central component responsible for
handling timers and incoming message data, is neither real-time
capable nor deterministic. Domain-specific requirements of
mobile robots, like sense-plan-act control loops, cannot be
addressed with the standard ROS 2 Executor. In this paper, we
present an advanced Executor for the ROS 2 C API which
provides deterministic scheduling and supports domain-specific
requirements. A proof-of-concept is demonstrated on a 32-bit
microcontroller.
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I. INTRODUCTION

Robots, like many other cyber-physical-systems, are
networks of computing devices. Microcontrollers are usually
used to connect sensing and actuation and to realize low-level
control. Here, hardware access and particularly deterministic
real-time computation are important, e.g., for safe obstacle
avoidance. More powerful computing devices (“hosts”)
execute higher-level functions where processing power is
important, e.g., path planning and mapping.

Because of very different resources available,
microcontrollers and host devices usually run very different
base software, which leads to conceptual gaps, integration
effort, and, arguably, functionality not always placed on the
most appropriate device.

Some attempts at deeper integration exist: For example,
rosserial [1] is a library for microcontrollers to interoperate
with the Robot Operating System (ROS) on the host side.
However, it is a separate implementation with very limited
features. Approaches such as mROS [2] go further, but at far
higher cost in terms of resources (e.g., mROS requires a 400
MHz MCU with 10MB of RAM). Both of these also only
support ROS version 1.

For ROS version 2 (ROS 2), which adds important features
such as quality of service and security, the micro-ROS project
[3] has ported the standard stack to medium-sized
microcontrollers (~100KB RAM). This means that all
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standard concepts, such as topics, services, parameters,
lifecycle, actions, etc. are available with the same API as on
the host, and that while resource constraints are still a factor,
porting has become much less effort.

However, the standard concepts are not enough to achieve
the performance we require from microcontrollers. In
particular, the standard ROS 2 Executor, which is the central
component responsible for handling timers and incoming
message data, is neither real-time capable nor deterministic [4]
in all current ROS 2 releases, up to and including the most
recent “Foxy” release. Domain-specific requirements of
mobile robots, like sense-plan-act control cannot be met and
must be implemented in the application.

Therefore, we present in this work an advanced Executor
for the ROS 2 C API (rclc) which provides deterministic
execution and supports domain-specific requirements.

Il. MICRO-ROS ARCHITECTURE

Figure 1 depicts the architecture of micro-ROS. The three
main changes compared to standard ROS 2 are: First, the use
of an RTOS (Zephyr, FreeRTOS and NuttX are currently
supported) instead of a desktop operating system; second, the
use a DDS-XRCE implementation instead of normal DDS
and, third, the extension of the ROS Client Support Library rcl
by the rclc package [5] to make it a full C API.

More resource demanding features, like node discovery,
are implemented on the ROS 2 agent, which runs on a host
with standard ROS 2

C++ API
(rclcpp)

Convenience functions,
deterministic execution, ...

rclc:

ROS Middleware Interface (rmw)

ROS 2 N Micro XRCE-DDS Client
Agent Ethernet,

Bluetooth,

Serial POSIX

o0
=
B4
~
m©
1S
=
(3}
c
o
)

+ Additional abstractions

Additional
drivers, ...

Zephyr, FreeRTOS, NuttX

Figure 1: micro-ROS Architecture
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More resource demanding features, like node discovery,
are implemented on the ROS 2 agent, which runs on a host
with standard ROS 2.

Ill. RCLC EXECUTOR

A. Domain-specific requirements

Mobile robots often have domain-specific requirements,
derived from the application. For example sense-plan-act
control loops (Figure 2), synchronization of sensor data with
different rates or prioritized processing (e.g., for safe obstacle
avoidance). One requirement for a high quality localization is
that all received data from multiple sensors should be
processed before the localization algorithm runs itself. This
leads to the design pattern of a phased-execution.

’—' sense ]——[ plan ]——[ act ]—‘

Figure 2: Sense-plan-act control loop

Deterministically synchronizing sensor data with different
rates is hard, due to latency jitter and clock drift. An
alternative is to wait for the input of one sensor (e.g. Laser)
and then request all other sensors (e.g. IMU) to send their data,
as shown in Figure 3. This requires to specify a pre-defined

@10Hz

IMU

Figure 3: Sensor data synchronization with a trigger

processing order of callbacks in the Executor.

B. Deterministic scheduling

Based on the analysis of domain-specific requirements, the
rclc Executor provides two main features [5]: First, the user
can specify a sequential processing order of all callbacks. A
callback is the corresponding function which is called on
incoming messages, timer events, or hardware events. Second,
a trigger condition defines when the processing starts. The
following predefined trigger conditions are available: one, any
and all. They trigger if one particular, at least one or all
callbacks are ready for execution, respectively. Additionally,
the user can define a custom trigger.

As memory is limited on a microcontroller, dynamic
memory is only allocated at the startup of the rclc Executor.
The performance overhead for this static scheduling with
sequential processing is minimal compared to the overhead of
the current ROS 2 Executor.

C. Demonstrator

The micro-ROS Kobuki demo [6] illustrates the use of
micro-ROS and the rclc Executor on the Kobuki platform,
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Figure 4: micro-ROS Kobuki demo

which is the mobile base of the well-known Turtlebot 2
research robot. Instead of a laptop running ROS 2, the Kobuki
is equipped with a STM32F4 microcontroller only. This
STM32F4 runs the micro-ROS stack and a port of the
thin_kobuki driver [7] interacts with the robot’s firmware
using the rclc Executor. This setup is depicted in Figure 4.

The STM32F4 communicates the sensor data to a remote
laptop running a standard ROS 2 stack. At the same time,
using the other direction of communication, the Kobuki can
be remote-controlled.

The trigger functionality has been demonstrated by
synchronizing two input data streams with different rates. This
example can be downloaded from the rclc_examples package
in [5].

IV. CONCLUSION

The paper presented the rclc Executor, which supports
domain-specific requirements and provides deterministic
scheduling for ROS 2 applications on microcontrollers. A
proof-of-concept demonstrator has been presented in the
micro-ROS Kobuki demo.
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