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Abstract— Robots are networks of a variety of computing 
devices, such as powerful computing platforms but also tiny 
microcontrollers. The Robot Operating System (ROS) is the 
dominant framework for powerful computing devices. While 
ROS version 2 adds important features like quality of service 
and security, it cannot be directly applied to microcontrollers 
because of its large memory footprint. The micro-ROS project 
has ported the ROS 2 API to microcontrollers. However, the 
standard ROS 2 concepts are not enough for real-time 
performance: In the ROS 2 release “Foxy”, the standard ROS 2 
Executor, which is the central component responsible for 
handling timers and incoming message data, is neither real-time 
capable nor deterministic. Domain-specific requirements of 
mobile robots, like sense-plan-act control loops, cannot be 
addressed with the standard ROS 2 Executor. In this paper, we 
present an advanced Executor for the ROS 2 C API which 
provides deterministic scheduling and supports domain-specific 
requirements. A proof-of-concept is demonstrated on a 32-bit 
microcontroller. 
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I. INTRODUCTION

Robots, like many other cyber-physical-systems, are 
networks of computing devices. Microcontrollers are usually 
used to connect sensing and actuation and to realize low-level 
control. Here, hardware access and particularly deterministic 
real-time computation are important, e.g., for safe obstacle 
avoidance. More powerful computing devices (“hosts”) 
execute higher-level functions where processing power is 
important, e.g., path planning and mapping. 

Because of very different resources available, 
microcontrollers and host devices usually run very different 
base software, which leads to conceptual gaps, integration 
effort, and, arguably, functionality not always placed on the 
most appropriate device. 

Some attempts at deeper integration exist: For example, 
rosserial [1] is a library for microcontrollers to interoperate 
with the Robot Operating System (ROS) on the host side. 
However, it is a separate implementation with very limited 
features. Approaches such as mROS [2] go further, but at far 
higher cost in terms of resources (e.g., mROS requires a 400 
MHz MCU with 10MB of RAM). Both of these also only 
support ROS version 1.  

For ROS version 2 (ROS 2), which adds important features 
such as quality of service and security, the micro-ROS project 
[3] has ported the standard stack to medium-sized
microcontrollers (~100KB RAM). This means that all

standard concepts, such as topics, services, parameters, 
lifecycle, actions, etc. are available with the same API as on 
the host, and that while resource constraints are still a factor, 
porting has become much less effort. 

However, the standard concepts are not enough to achieve 
the performance we require from microcontrollers. In 
particular, the standard ROS 2 Executor, which is the central 
component responsible for handling timers and incoming 
message data, is neither real-time capable nor deterministic [4] 
in all current ROS 2 releases, up to and including the most 
recent “Foxy” release. Domain-specific requirements of 
mobile robots, like sense-plan-act control cannot be met and 
must be implemented in the application. 

Therefore, we present in this work an advanced Executor 
for the ROS 2 C API (rclc) which provides deterministic 
execution and supports domain-specific requirements. 

II. MICRO-ROS ARCHITECTURE

Figure 1 depicts the architecture of micro-ROS. The three 
main changes compared to standard ROS 2 are: First, the use 
of an RTOS (Zephyr, FreeRTOS and NuttX are currently 
supported) instead of a desktop operating system; second, the 
use a DDS-XRCE implementation instead of normal DDS 
and, third, the extension of the ROS Client Support Library rcl 
by the rclc package [5] to make it a full C API. 

More resource demanding features, like node discovery, 
are implemented on the ROS 2 agent, which runs on a host 
with standard ROS 2 

Figure 1: micro-ROS Architecture 
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More resource demanding features, like node discovery, 
are implemented on the ROS 2 agent, which runs on a host 
with standard ROS 2. 

III. RCLC EXECUTOR 

A. Domain-specific requirements 
Mobile robots often have domain-specific requirements, 

derived from the application. For example sense-plan-act 
control loops (Figure 2), synchronization of sensor data with 
different rates or prioritized processing (e.g., for safe obstacle 
avoidance). One requirement for a high quality localization is 
that all received data from multiple sensors should be 
processed before the localization algorithm runs itself. This 
leads to the design pattern of a phased-execution.  

Deterministically synchronizing sensor data with different 
rates is hard, due to latency jitter and clock drift. An 
alternative is to wait for the input of one sensor (e.g. Laser) 
and then request all other sensors (e.g. IMU) to send their data, 
as shown in Figure 3. This requires to specify a pre-defined 

processing order of callbacks in the Executor. 

B. Deterministic scheduling 
Based on the analysis of domain-specific requirements, the 

rclc Executor provides two main features [5]: First, the user 
can specify a sequential processing order of all callbacks. A 
callback is the corresponding function which is called on 
incoming messages, timer events, or hardware events. Second, 
a trigger condition defines when the processing starts. The 
following predefined trigger conditions are available: one, any 
and all. They trigger if one particular, at least one or all 
callbacks are ready for execution, respectively. Additionally, 
the user can define a custom trigger. 

As memory is limited on a microcontroller, dynamic 
memory is only allocated at the startup of the rclc Executor. 
The performance overhead for this static scheduling with 
sequential processing is minimal compared to the overhead of 
the current ROS 2 Executor. 

 

C. Demonstrator 
The micro-ROS Kobuki demo [6] illustrates the use of 

micro-ROS and the rclc Executor on the Kobuki platform, 

which is the mobile base of the well-known Turtlebot 2 
research robot. Instead of a laptop running ROS 2, the Kobuki 
is equipped with a STM32F4 microcontroller only. This 
STM32F4 runs the micro-ROS stack and a port of the 
thin_kobuki driver [7] interacts with the robot’s firmware 
using the rclc Executor. This setup is depicted in Figure 4. 

The STM32F4 communicates the sensor data to a remote 
laptop running a standard ROS 2 stack. At the same time, 
using the other direction of communication, the Kobuki can 
be remote-controlled. 

The trigger functionality has been demonstrated by 
synchronizing two input data streams with different rates. This 
example can be downloaded from the rclc_examples package 
in [5]. 

IV. CONCLUSION 
The paper presented the rclc Executor, which supports 

domain-specific requirements and provides deterministic 
scheduling for ROS 2 applications on microcontrollers. A 
proof-of-concept demonstrator has been presented in the 
micro-ROS Kobuki demo. 
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Figure 4: micro-ROS Kobuki demo 

 

 
Figure 2: Sense-plan-act control loop 

 

 

 
Figure 3: Sensor data synchronization with a trigger 
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